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1. Introduction

In this paper we set out to study the following non-local Neumann eigenvalue problems in a smooth bounded domain
QCR'"(n>1)

(1.1)

—Zpu = AulP"?u in £,
ue WP(£2),

where 1 < p < ooand 0 < s < 1. Here A stands for the eigenvalue and .% , is the regional fractional p-Laplacian, that is

— -2 .
s pu(X) :=2p.v./ lu@) —u@) " (u@) — u®)) dy

2 |x — y["+sp

)

where p.v. is a commonly used abbreviation for “in the principal value sense”.
Observe that, in the case p = 2, %, is the linear operator defined in [20], that is the regional fractional Laplacian.
The first non-zero eigenvalue of (1.1) can be characterized as

_ P
o [ M gy
[ lu@)|P dx

where X, = {v e WP (£22):v # 0, f_Q [v() P 2v(x) dx = O}. Here W*P(£2) denotes a fractional Sobolev space (see
Section 2).

Non-local eigenvalue problems were recently studied in several papers. In [4] it was analyzed the first Neumann
eigenvalue of a non-local diffusion problem for some non-singular convolution type operators. In [3] this analysis was
extended for non-local p-Laplacian type diffusion equations. Some properties about the first eigenvalue of the fractional

A1(s, p) .= inf ue Xspo,

* Corresponding author.
E-mail addresses: Idpezzo@dm.uba.ar (L.M. Del Pezzo), asalort@dm.uba.ar (A.M. Salort).

http://dx.doi.org/10.1016/j.na.2015.02.006
0362-546X/© 2015 Elsevier Ltd. All rights reserved.


http://dx.doi.org/10.1016/j.na.2015.02.006
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2015.02.006&domain=pdf
mailto:ldpezzo@dm.uba.ar
mailto:asalort@dm.uba.ar
http://dx.doi.org/10.1016/j.na.2015.02.006

L.M. Del Pezzo, A.M. Salort / Nonlinear Analysis 118 (2015) 130-143 131

Dirichlet p-Laplacian were established in [18,23] and up to our knowledge no investigations were made about fractional
Neumann eigenvalues.

To be more concrete, we will study the asymptotic behavior of the first non-zero eigenvalue A(s, p) ass — 1~ and as
p — oo.

In order to introduce our results, we need to mention the well-known result of Bourgain, Brézis and Mironescu [8]: for
any smooth bounded domain 2 C R", u € WP(£2) with 1 < p < oo there exists a constant X = X (1, p, £2) such that

lim (1 — s)/ ue) — uyP dxdy:/ V| dx. (12)
s—>1~ |X— |n+sp Q

See Theorem 2.2 for more detalls.
Our first result is related to the limitas s — 17 of A;(s, p). We show that such that K (1 — s)A(s, p) goes to

IVull]
a1, p) = infip’”m:u € Xp

1l

that is, the first non-zero eigenvalue of the p-Laplacian with Neumann boundary conditions, namely A{(1, p) is the first
non-zero eigenvalue of

—Apu = AluP*u in £,
au
v
where Apu = div(|Vu|P~2Vu) is the usual p-Laplacian and v is the outer unit normal to 9£2.

=0 onds2

Theorem 1.1. Let §2 be a smooth bounded domain in R", and p € (1, 00). Then
lim J(1 —s)A1(s, p) = 21(1, p),
s—>1"

where X is the constant in (1.2).

Lastly we study the limit case p — 0. We show that

A, Jim 2 P=
1(s, 00) = lim A(s, p) diam(2)”

Here diam($2) denotes diameter of 2, that is

diam(£2) = sup |x —y|.
X, yeR

This result is truly different than that obtained in the local case, in contrast with the Dirichlet p-fractional Laplacian. More
precisely, in [28] the authors show that
X1(1,00) = llm r(1, _—
1( )= 1( P) = damp ()’
where

(1, 00) == inf{||Vu||Loo(g): ue W' (2) st maxu = —minu = 1} ,

and diamg, (£2) is the intrinsic diameter of §2, that is

diamg (2) = sup do(x,y)
X, yes2

with dg; denoting the geodesic distance in §2. Moreover, they show that if u, is a normalized minimizer of A,(1, p), then up
to a subsequence, u, converges in C(£2) to some minimizer u € W (£2) of A;(1, co) which is a solution of

max {Asl, —|Vu| + A1(1, 00)u} in{x € 2:u(x) > 0},
min {Axu, |Vu| + A1(1, co)u} in{x € 2:u(x) <0},

A =0 in{x € 2:u(x) =0},
ou
— =0 onos2,
av
in the viscosity sense, where A is the co-Laplacian, that is
du 9%u du
Aol = — —

=1 87)(1 BXjan 3Xj '

See also [17].
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For the local Dirichlet p-Laplacian eigenvalue problems the same limit was studied in [21,22], where the authors show
that

) 1 1 ] IVUleo ) 1.00
lim wi(1,p)» = —— = u1(1,00) == mf{'u eW, " (£2), u#0¢.
p—o0 R(£2) llllzoo2) 0

Here R($2) denotes the inradius (the radius of the largest ball contained in §2) and w1(1, p) is the first eigenvalue of the
Dirichlet p-Laplacian. In addition, they prove that the positive normalized eigenfunction v, associated to (.(1, p) converges,
up to a subsequence, to a positive function v € W01’°°(52) which is a minimizer of ©(1, co) and is a viscosity solution of

min{|Du| — u1(1, 00), Aot} =0 in £2,
u=20 on d52.

Recently, the Dirichlet fractional p-Laplacian is considered, in [23] it was proved that

= [1(s, 00) = inf{mwm(”):qs €C(R), ¢ # o},

1
lim s,p)P =
prs, 415, P) 1612

R($2)°
where w1 (s, p) is the first eigenvalue of the non-local eigenvalue problems

_ -2 _
zf lu(x) — u@) P2 (u) — uy)) dy + AU 2u() =0 in 2.
RP |x — y["+sP

u=0 inR"\ 2.

Moreover, they show that if w, is a minimizer of w(s, p), then there exists w € Co(£2) such that, up to a subsequence
wp, — w uniformly in R" which is a minimizer of 111 (s, 00) and is a solution of

max {Log(x), LLUX) + p1(s, 00)u(x)} =0 in 2,
u=~0 onds2,

in the viscosity sense. Here

Logu(x) = sup PO TUX) e U — U
yeRrn |y - Xls yER" |y - Xls

)

and

L-u(x) == inf uy —u®
© yeRN |y — X|s

In this context, our result is the following.

Theorem 1.2. Let $2 be a bounded open connected domain in R" and s € (0, 1). Then

[u]ws.0(2)

=

lim Aq(s, = —— = A(5,00) :=inf U€E Ay,
A MG PP = @y S { T }

where A = {u € W>*(£2):u # 0, supu + infu = 0}. Moreover, if u, is the normalizer minimizer of A1(s, p), then up to a
subsequence u, converges in C(£2) to some minimizer Uy, € WS (£2) of A1 (s, 0o) which is a viscosity solution of

max{% coU(X), Z Lux) + A1(s, 00)u(x)} =0 whenu(x) > 0,
Ziooll(x) =0 when u(x) = 0, (1.3)
min{-% o U(x), flgfoou(x) + A1(s, 00)u(x)} =0 whenu(x) <0,

where % oo = £ u+ 2 u,

M and D?;:x)u(x) = inf M'

£ ux) = sup
o —x[° yezy#x |y —x[°

yeQ,y#x ly

The operator .% . is the Holder co-Laplacian, see [10].

Let us conclude the introduction with a brief comment on previous bibliography that concerns mostly the non-local
operators.

One of the biggest interests in defining the operator .% , lies in its probabilistic interpretation in relation of a restricted
type of Lévy processes. In [6], it was studied the s-stable processes, a particular kind of Lévy processes. For s € (0, 1) and
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n > 1 they proved that the Dirichlet form associated with a symmetric s-stable process in R" is given by

E(u. v) = C/ ) —u®) () —v(y)) dxdy.
RM JRN [x — y|nt2s

where u, v belong to W52(R™) and C is a constant depending on n and s. It is well known that E is related to the fractional
Laplacian (—A)*, that is

u(x) —u(y)

AT dy Yue W*P(R"

(—=A)’ux) =C p.v./
R

where C is a constant depending on n and s, precisely given by

1—cos&) , \ '
C = — 7d s
(/R |&[m+2s 5)

see [ 14, Section 3].

Due to the action of the process in the whole space it was widely used to model systems of stochastic dynamics with
applications in operation research, queuing theory, mathematical finance among others, see [2,5,9] for instance.

If one wished to restrict the action of a process to a bounded domain £2 C R", one could consider the so-called s-stable
process killed when leaving §2, in which the Dirichlet form still being the same, but the functions are taken with support in
£2,see[7].

Alternatively, another way is to study the so-called censored stable process, that is a stable process in which the jumps
between £2 and its complement are forbidden. In this case, the functions are taken in the fractional Sobolev space W*2(£2)
and the correspondent Dirichlet form is given by

£, v) = C/ / @) —u@) WX —v) dxdy.
2J2

|X _y|n+25

This kind of processes are generated by

Abu(x) =C p.v.f uw —uly) d

o |X _ y|n+2$

which is called regional fractional Laplacian in §2. See [7,11,19,16,20] and references therein.

From a physical point of view, this operator describes a particle jumping from one point x € §2 to another pointy € 2
with intensity proportional to [x — y|~"~25. Moreover, this kind of process can be used to describe some random flow in a
closed domain with free action on the boundary, and they are always connected to the Neumann boundary problems. As it
was pointed in [4,12] the idea of s-process in which its jumps from £2 to the complement of §2 are suppressed, are related
to the Neumann non-local evolution equation

ur(x, t) = ALu(x)
uewH(2)

since the individuals are “forced” to stay inside 2. In contrast with the classical heat equation u; = Au, the diffusion of the
density u at a point x and a time t depends not only on u(x, t), but also on all values of u in a neighborhood of x.

In the course of the writing of this paper, the authors in [15] introduced a new Neumann problem for the fractional
Laplacian by considering the non-local prescription

pv_/ U —uw) 4 g
2

|x — y|mts

forx € R" \ 2 as a generalization of the classical Neumann condition d,u = 0 on 9£2.

The paper is organized as follows: in Section 2 we collect some preliminaries; in Section 3 we deal with the first non-
zero eigenvalue; in Section 4 we prove Theorem 1.1; in Section 5 we prove Theorem 1.2, while in the final section we
give an example of nonlinear non-local operator such that its first non-zero eigenvalue (s, p) has the following property:
(s, p)? — 2/diamg(2) as p — oo.

2. Preliminaries

We begin by recalling some results concerning the fractional Sobolev spaces.
Let £2 be an open setinR", s € (0, 1) and p € [1, 00). The fractional Sobolev spaces are defined as

lu®) —u)|

S,p — p .
WSP(R2) == {ueL (2): p—TITE

e P(2 x 9)},
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which endowed with the norm

[u®x) —u)?

u = |u + ————dxdy,
lullwss o) = Il /ﬂ Ty y

is a separable Banach space. Moreover, if p € (1, co) then W*P(£2) is reflexive.
The fractional space W**°(£2) is defined as the space of functions

WS (2) == {u € 1°(Q): M € 1°(2 x 9)}
X—Yy
with the norm
u(x) — uy)
lullwsee() = llulliec) + | ————5— .
[x —yl [°(2%2)

Throughout the paper [u]wsr () denotes the so-called Gagliardo seminorm
1
u(x) —u)P P
/ 6 ~vOF ay)” . if1 <p < oo,
elJo |x—yrt
ux) —u(y)
[x—yF

For more details related to these spaces and their properties, see, for instance, [1,13,14].
The proof of the following lemma can be found in [13].

[ulwsp2) ==
ifp=o00

L®(£2x82)

Lemma 2.1. Let 2 C R" be an open set of class C'. Then C'(£2) is dense in W*P(£2).

The next results are established in [8, Corollaries 2 and 7].

Theorem 2.2. Let $2 be a smooth bounded domain in R", and p € (1, 00). Assume u € [P (S2), then
llm KA = 9)[ulyspo) = [u]l\)mw(m
with
/ IVulPdx, ifueW"(Q),
if ug whh(e).

p
[u]wl p(Q)

Here X depends only on the p and 2.

This result was later completed in [24], where the authors show that for u € Use(O,l) WS"”(R”) with1 < p < oo, we
have that

p
SE)%}_ 26() [U]Wsp(Rn) - ||u||Lp(Rn)~

Here the space Wo’p (R™) is the closure of C§°(R") in the norm [u]wsp@n) and w,—1 is the (n — 1)-dimensional Hausdorff

measure of the unit sphere "1,
Finally in [25], the author shows that the above two results can be viewed as consequences of continuity principles for
real interpolation scales.

Theorem 2.3. Let §2 be a smooth bounded domain in R", and p € (1, 00). Let {us}se(0,1) be a subset of [P (§2) such that for any
s € (0, 1) we have that u; € WSP(£2) and

(1 = 9)[uglwsr2) < C.

Then, there exist u € W'P(£2) and a subsequence {ug, Jken such that
ug, — u strongly in [P (2),
ug, — u weakly in W'"*P(£2),

foralle > 0.

Remark 2.4. In [8] some inequalities involving fractional integrals are established. A careful computation allows us to
compute explicitly the constant in [8, Lemma 2]. By means of the Chebyshev inequality together with Lemma 2 from [8], in
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Eq. (36) from [8] it is obtained that

> 27P5[u, I

p
elUely1-ep g Wi-5.p(2)’

where 0 < ¢ < 6.
Denotings := 1 —¢andt := 1 — §, last inequality is equivalent to

(1= DUl < 27770 = ) UsTysp(q)s (2.1)
where0 <t <s < 1.

Forany s € (0, 1) and any p € [1, 0o), we say that an open set 2 C R" admits an (s, p)-extension domain if there
exists a positive constant C = C(n, p, s, £2) such that: for every function u € W*P(£2) there exists i € W5P(R") with
u(x) = u(x) forall x € £2 and ||t||wsprr)y < Cllullwsp(s). For example, any Lipschitz open set §2 admits a (s, p)-extension,
see [ 13, Proposition 4.43].

A useful result to be used is the fractional compact embeddings. For the proof see [ 14, Corollary 7.2] and [13, Theorem
4.54].

Theorem 2.5. Let s € (0, 1), p € (1, 00) and 2 C R" be a bounded open set that admits an (s, p)-extension. If sp < n then
we have the following compact embeddings

WSP(2) — LU(82) forallq € [1, p}).
In addition, if §2 has a Lipschitz boundary and sp > n then we have the following compact embeddings:
WSP(2) — LU(2) forallq e [1,p}), if sp=mn;
WP (2) — CE’A(Q) forallx <s—n/p, if sp > n.
Here p} is the fractional critical Sobolev exponent, that is
np

pr={n—Ssp
00, if sp>n.

. ifsp<n,

3. The first non-zero eigenvalue

Now we will show that A1 (s, p) is the first non-zero eigenvalue of (1.1).
We say that the value A € R is an eigenvalue of problem (1.1) if there exists u € W*P(§2) \ {0} such that

e, ¢) = xf [ulP2)u)¢(x)dx Vo € C(2), (3.1)
2
where
_ -2 _ _
. $) :// [u(y) —u@) P~ (u@y) — u®)(@y) — ¢X)) dxdy.
2Je |x — y|tsp

In which case, we say that u is an eigenfunction associated to A.
Of course A = Oisaneigenvalue and itis isolated and simple. Moreover, if A > 0isan eigenvalue and u is an eigenfunction
associated to A, then, taking ¢ = 1 as a test function in (3.1), we have

/ [u(x)|P~2u(x) dx = 0.
2

Thus, the existence of the first non-zero eigenvalue A{(s, p) of (1.1) is related to the problem of minimizing the following
non-local quotient

[U]‘;Vs.p(g)
||v||fp(9)
among all functions v € W*P(£2) \ {0} such that fQ [v(x)[P~2v(x) dx = 0.
We begin establishing the following result.

Theorem 3.1. Let §2 be an open set of class C!, s € (0, 1) and p € (1, c0). Then

[U]&/s,p(g) .

r(s, p) = inf{ v e WSP(R2), v o,/ [v(x) [P~ 2v(x) dx = 0} (3.2)
2

||v||ILJp(_Q)

is the first non-zero eigenvalue of (1.1).
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Proof. Let {u;}jen C W*P(£2) be a minimizing sequence for A (s, p) such that ||u;|p(2) = 1for allj € N. Then there exists
a constant C such that

[ujlwsr2) < C.

Therefore {u;}jen is bounded in W*P(£2). Then, by Theorem 2.5, there exists a function u € W*P(£2) such that, up to a
subsequence that we still call {u;}jen,

u;j — u weakly in W*P(£2),
uj — u strongly in LP(£2).

Hence [[ullp@) = 1, |uj(x)[P~2uj(x) — |u(x)|P"2u(x) a.e.in £2, and
2 2
I 1P ujll pro-n @y = IHulP™“ull proe-1 (o)

Then, by [27, Theorem 12], [;/P~2u; — |u[P~2u strongly in L”®~(£2). Therefore, since [, |u;(x)|P~%u;(x) dx = Oforallj € N,
we have that [, |u(x)[P"2u(x) dx = 0. Then u is not constant.
On the other hand, since u; — u weakly in W¥P(£2),

p EN p : p
[u]ws‘p(g) =< h]@é?f[uj]ws.p(g) =jlirgc[uj]ws.p(g) = A (s, p).
Then, by (3.2), we have that

[Ulysp (o) = 105, D).

Observe that A¢(s, p) > 0 due to u is not constant. In addition, A (s, p) is attained in

{v € WS”’(.Q):/ lv(x)|P2v(x) dx = 0and ||v]|p o) = 1} .
2

Then, proceeding as in the proof of Theorem 4.3.77 in [26], we have that 11 (s, p) is the first non-zero eigenvalue of (1.1). O
Finally we show that if an eigenfunction belongs to C(£2) then it is a viscosity solution of
— Ziptt = Ja (s, plulP~u (33)

in the following sense.

Definition 3.2. Suppose that u € C(£2). We say that u is a viscosity super-solution (resp. viscosity sub-solution) in £2 of
Eq. (3.3) if the following holds: whenever xy € £2 and ¢ € C'(£2) are such that

©(x0) = u(xg) and ¢@(x) <u(x) (resp.@(x) > u(x))forallx € R"
then we have
Zsp(X0) + 11(5, P)lp(X0) [P (x0) <0 (resp. > 0).
A viscosity solution is defined as being both a viscosity super-solution and a viscosity sub-solution.

For the proof of the following theorem, see [23, Proposition 11].

Theorem 3.3. Let s € (0, 1) and p € (1, 00) such that s < 1 — /p. An eigenfunction u € C($2) associated to (s, p) is a
viscosity solution of (3.3).

4. The limitass — 1~

In this section, our main aim is to prove that
K(1—=s)A(s,p) = A1(1,p) ass— 17,

where X is the constant of Theorem 2.2.
Before we prove Theorem 1.1, we need to show the following technical lemma.

Lemma 4.1. Let {sj}jen C (0, 1) and {u;j}jen C LP(£2) such that s; — 17 asj — oo, u; € W9P(£2),

J<(1—sj)[uj]‘;v 50 =1 and /Q |u;(x)|P~2uj(x) dx = O (4.1)
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forallj € N. Then there exist subsequences {sj, }xen and {u;, }xen, and a function u € W'P(£2) such that
uj, — u strongly in [P (£2)
and

[u]wlv(sz) llmmeC(l ka)[u%k]w%k .

with [, [u(x)[P~2u(x) dx = 0.
Proof. Forany t € (0, 1), there exists jo € Nsuchthat0 < t <s; < 1forallj > jo. By (2.1) and (4.1) it follows that

KA = Oyl < 270K A = syl < 2M70 i > o (42)

WP (2)
Then, by Theorem 2.5, there exist a subsequence {u;, }xen, and a function u € W'?(£2) such that
uj, — u strongly in L (§2),
u, — u weakly in WP ().
Using (4.2), we have

K(1— t)[”]wfp(rz) < liminf]((l - ka)[ulk]wrp(g)

< 2p(-0 llmmeC(l si) [, 1P D Sep

k—o00 @)

On the other hand, by Theorem 2.2, we get

[ul’ 11m X1 —t)[ul,

wip2) = < llmmeC(l —s]k)[u]k]

th(g) s]k p(Q)

Finally, we show that fg [u(x)|P~2u(x) dx = 0. We have that [uj, (x)|p*2ujk (%) — |u()P"%u(x) a.e.in £2, and

—2 —2
Il 1w P~ "t -1 2y = I ulP“ullpro-1) (o)

due to uj, — u strongly in LP(£2). Then, by [27, Theorem 12], |u;, |p*2ujk — |ulP~2u strongly in I”®-V(£2). Therefore, since
S w5, ) [P~2u;, (x) dx = 0 for all k, we have that [, [u(x)[P2u(x)dx =0. O

We finish this section by proving Theorem 1.1.

Proof of Theorem 1.1. Let u € W'P(£2) be an eigenfunction associated to A;(1, p). Since WIP(2) C WSP(£2) for all
s € (0,1) and f_q [u(x)[P"2u(x)dx = 0, u is an admissible function in the variational characterization of A;(s, p) for all
s € (0, 1). Then,

D
K(1—=s)h(s.p) < K( _S)M

Il g
Therefore, by Theorem 2.2, we get that

[ ]{’/Vsp(g) [u]l‘;/l p(g)
limsup K (1 —s)A1(s,p) < 11m K(1—15) =

s—>1" ”u”yJ(Q) ”u”u?(g)

21(1, p). (4.3)
On the other hand, let {s;}jen be a sequence in (0, 1) such thats; — 17 asj — oo and
lim X (1 —s))A1(sj, p) = liminf X (1 — s)A1(s, p). (4.4)
Jj—>o0 s—1~
Forj € N, let us choose u; € W*P(£2) such that
JC(l — Sj)[u]']svsj‘p(g) =1, /Q |Uj(x)|P*2uj(X) dx =0,
and
KA =DMl 0o = K1 = 5105 Pl lp ) -

By Lemma 4.1, there exist a subsequence, still denoted by {1;}cy, and a function u € W (£2) such that

uj — u strongly in LP(£2), / [u(x)|P~2u(x) dx = 0,
2
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and

D
(Ulypo) =

. p
< l]jl‘E{lxr)lfJ((] — Sj)[uj]WSjp(_Q)'

Therefore, [u]ﬁvl,p @ < 1. Moreover, since
1=X01- sj)[uj]€VSj<p(g) = K(1— Sj))\l(sjvp)”uj”fp(fg)

forallj € Nand u; — u strongly in LP(£2), by (4.4), we have

1 =liminf X (1 — )21 (s, p)[ullfp q)- (4.5)
s—>1—
Thus, u is an admissible function in the variational characterization of A1 (1, p). Then, using that [u]svkv(:z) < land (4.5), we
have that
A1(1,p) < liminf X (1 — s)A(s, p). (4.6)
s—1"

From (4.3) and (4.6) the result follows. O

5. The limitas p — oo

The goal of this section is to study the limit as p — oo of the first non-zero eigenvalue A (s, p). Before beginning, we
need to establish the following lemma.

Lemma 5.1. Let §2 be a bounded open and connected domain in R", s € (0, 1), xo € £2 and ¢ € R. The function w(x) =
|x — xo| — ¢ belongs to W1 (£2) and
1
K diam(2)1| 2|7

1
(p(1—s))?
where k;, is the measure of unit ball and | 2| is the measure of £2.

[wlwsr2) < Vp € (1, 00)

Proof. We start the proof recalling that
we W ®(2) and |w|ysoon) = diam(2)'™° ae.in 2.

Then, we have that w € W*P(£2) for all p € (1, c0).

On the other hand
[w) —w)P
p _ —
[w]Ws,p(Q) —/;2 5 |x—y|"+PS dxdy
X —Xo| — [y — ol I
:/ [l ol — 1y 0||dxdy
2lJe |x — y|ntps

IA

/ / x =y dxdy
22 J02

- pdiam(2)P0-9| 2|
p(1—ys)

This proves the lemma. O

We carry out the proof of Theorem 1.2 in the two following lemmas.

Lemma 5.2. Let §2 be a bounded open and connected domain in R" and s € (0, 1). Then

[u]ws.o ()

=

= A1(s, 00) ::inf{ :ueA},

2
lim Ay(s, p)P = —
pm (s, PP = ey

llullieo(2)
where A == {u € W>®(£2):u # 0, supu + infu = 0}. Moreover, if uj, is the normalizer minimizer of 11(1, p), thenup to a
subsequence, u,, converges in C(R2) to some minimizer uy, € WS (£2) of A;(1, 00).
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Proof. We split the proof in three steps.
Step 1. Let us prove that

1
limsup Aq(s, p)P <

S - (5.1)
p—>00 dlam(.Q)‘
Let xo € £2. We choose ¢, € R such that the function
wp(X) = |x — x| — ¢
satisfies that
/ lw, (X)|P~2w, (x) dx = 0.
2
We can also observe that w, € W*P(£2) for all p € (1, 00). Then, by Lemma 5.1, for any p € (1, oo) we have that
op (X)— p 1
s.p) < Jo Jo B dxdy o diam(2)'5|2|»
1, = = .
Jo lwp()1P dx (p(1 = )7 [, lwp ()P dx
Then
. 1 diam(£2)'~*
limsup Aq(s,p)? < T (5.2)
p—>00 F p P
llprg ggf ([ lwp®)|P dx)
On the other hand, proceeding as in the proof of Lemma 1 in [17], we have that
1
P diam(£2
lim inf (/ |wp ()P dx) 5, diam($2) (5.3)
p—>0o0 o 2

Thus, by (5.2) and (5.3), we have that (5.1) holds.
Step 2. Let us prove that

U |ws,oo 1
inf{[]w(m:u € A} < liminfA(s, p)?.
ltll oo 2) p—o0

Let {pj}jen be an increasing sequence in (1, 00) and {u;};en be a sequence of measurable functions such that p; — oo as
j— oo,

1
lim (s, p)" = liminfA;(s, p)? . (5.4)
j—oo p—>0o0

and for any j € Nu; € WSFi(£2),

sy = 1, / 10 P21, (0) e = 0,
2

and
_ luj(y) — u(x) "
Aq(s, Pj) = \/Q /; W dx dy (55)
Then, there exists a constant C independent of j such that
[Ulyspigy < C (56)
forallj € N.

Let us fix g € (1, 0o) such that sq > 2n. There exists jo € N such that p; > ¢ for all j > jo. Then by Hélder’s Inequality,
we have that

11 11
lujlliacey < 1217 " llujllpio) < 1217 % Vj = jo, (5.7)
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and takingr = s — /g € (0, 1), again by Holder’s Inequality, we get
q q
/ / |y —u; (7 uJ(V)I / / |y =y 7 dxdy
x— I x— I
_ Py &
< |2p" / / 11500 = O dxdy )"
Ix — y|*i

nq ,i
< diam(.Q)pj |_Q| by [uj]%pj(m. (5.8)
Then, by (5.6),
u;(x u ng _4
'”) 1500 = O 4y 4y < diam() ¥ 12125t Vi = jo
|X _ y|n+rq

where C is a constant independent of j. Hence {u;}>j, is a bounded sequence in W™9(£2). Then, since rq = sq — n > n, by
Theorem 2.5, there exist a subsequence of {u;};»;,, which we still denoted by {u;};>;,, and a function u, € C(£2) such that

Uj — Us uniformly in £2,
Uj = Uy weakly in W"9(£2).
Then, by (5.7), |luco ll1a(2) < |.Q|%, and by (5.4), (5.5) and (5.8), we get

[usolwrace) < liminflujlwroe)
j—>o0

o & 2(%3%)
< liminfdiam(£2)% |£2| T Uil gy
]—>0o0
2 1
< |£2|9 liminfA¢(s, p)P.
p%OO
Letting ¢ — oo, we get ||ux 1oy < 1and
1
[Uw]wsoc(g) < lim inf)\.](s, p)B (59)
p—0o0
On the other hand,

1
1= lujllpi oy < 19217 ujllice@y Vi = Jo

then 1 < |Jugo|lroo (). Hence |[uuo |12y = 1 and by (5.9) we get

u 5,00 1
[oclwso@) _ liminf A, (s, p)?. (5.10)
lltoo ll oo (02) p—>o0

Finally, in [17] it was proved that the condition fQ |uj(x)|1’f‘2uj(x) dx = 0 leads to sup U, + infu., = 0. Then, using
(5.10), we get
u 0 1
f{M € A} < liminfA(s,p)?.
lullio () p—>o0
Step 3. Finally, we prove that

< nf{w:uey\v}. (5.11)

diam($2)* llull oo (2

For any u € +, we have

2||ulleo @) = supu — infu
sup{lu(x) —u()|:x,y € 2}
SM:x,y € Q}

Ix —yI*
dlam(Q)S [U]WS,OO(Q).

=sup{|x—y|

IA
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Thus
2 [u]ws.o(2)
diam(£2)* = |luflreo ()

forall u € A.Hence (5.11) holds.
Then, by steps 1-3, we get

2 U ys.oco
—— < inf{M:u S A}
diam(£2)° llullie o)

IA

liminf (s, p)?
p—>00

lim sup A (s, p)zli

p—>o0

2
=< TNV
~ diam(£2)’

2 U |ws.oo
= — :inf{M:u € A}.
diam($2)°* llulleo2)

In addition, by (5.10), we have that u,, is a minimizer of A;(1, oo) which proves the lemma. O

IA

that is

Sim

lim Aq(s, p)
p—>o0

Our last aim is to show that u,, is a viscosity solution of (1.3). We start by intruding the definition of viscosity solution.

Definition 5.3. Suppose that u € C(£2). We say that u is a viscosity super-solution (resp. viscosity sub-solution) in §2 of
Eq. (1.3) if the following holds: whenever x, € £2 and ¢ € C'(£2) are such that

©(x0) = u(xg) and @) <u(x) (resp.p(x) > u(x))forallx € R"
then we have
Max{% co®(X0), Z 0@ (X0) + 21(1, 00)@(x0)} < 0 (resp. > 0) if p(xo) > 0

%5009 (X0) < 0 (resp. > 0) if o(xg) =0
min{% @ (X0), Z; @ (X) + A1(1, 00)@(X0)} < 0 (resp. > 0)  if p(xo) < O.

A viscosity solution is defined as being both a viscosity super-solution and a viscosity sub-solution.

For the proof of the following lemma we borrow ideas from [23, Theorem 23].

Lemma 5.4. Let 2 be a bounded open connected domain in R" and s € (0, 1). Then u, is a solution of (1.3) in the viscosity
sense.

Proof. We begin by observing that, by Lemma 5.2, u, is a minimizer of A1(1, 00) and there exists a sequence {p;};ey such
that pj — oo and u; — uy uniformly in 2 asj — oo, where u; is an eigenfunction associated to A+ (s, p;). Without loss of
generality, we can assume that p;s > n for allj € N. Then u; € C(£2) for all j € N.

We only verify that u,, is a viscosity super-solution of (1.3). The proof that u, is also a sub-solution is similar. Let us fix
some point X, € £2. We assume that ¢ is a test function touching u, from below at a point Xy, and we may assume that
the touching is strict by considering ¢(x) — |x|?n(x), where n = 1 in a neighborhood of xy and n > 0. It follows that uj—¢@
attains its minimum at points x; — Xo. By adding a suitable constant ¢; we can arrange it so that ¢ + ¢; touches u; from
below at the point ;.

By Theorem 3.3, an eigenfunction is a viscosity solution of (3.3), then we have

i—1
Loy () + Mi(s. pul (%) < 0.
We write the last inequality as

AT BT T D <0

j J
where
_ — o(x)IPi—2 — o(x))*
A]p, 1:2/ lp(y) — @(xp|Pi (ﬁgy-) @(x)) dy.
2 ly — x;|" P

)

g :2/ le) — )P () — p()~ d
2

|y _ Xj|n+spj
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¢ = hs p) Uy ()
DY = (s pp) (u (xp)Pi
In[10, Lemma 6.5], it is proved that
A — L o), B> —Z _ ¢x).
as j — oo. In addition, by Lemma 5.2, we have
G — M(s,0009(x0)",  Dj—> Ai(s, 00)9(X0)
On the other hand, if u, (xg) > 0 we get

pji—1 pi—1 pi—1

AT <

J
and by dropping either Ajr] or Cfrl, and sending j — oo we see that
LI 9(X0) < =L p(X) and  Ai(s, 00)@(x0)T < —£ @(Xo),
which leads to
Zoop(X0) <0 and 2 @(Xo) + A1(s, 00)¢(x0)" <0,
and we can write
Max{.% oo @ (X0), Z; 0¥ (X0) + A1(s, 00)@(x0) T} < 0.

If us (%) < 0 we obtain that

A <D BT < 2max(g) D),

that is

A < 2”1 max{B;, D;}.
Then, sending j — o0, we get

Lioo®(X0) <0 or ' @) — Ai(s, 00)p(x0)” <0,
which can be written as

Min{.% 0@ (X0), £, ¢ Xo) — A1(s, 00)¢(X0) "} < 0.
Finally if us (xo) = 0, it follows that .% ¢ (X9) < 0. This proves that u is a viscosity super-solution of Eq. (1.3). O

6. Comments

Let d(-, -) be a distance equivalent to the usual distance. If we take the following nonlinear non-local operator
. |u(y) — u@)|P~*(u(y) — u(X))
Lspl(x) =2 p.v./ A,y
in place of .% ,, following what was done in the previous section, we can see that the first non-zero eigenvalue of

—&ptt = AlufP?u in £2,
uec WP (),

Ju@ —u@)|P dxd
== y
A(s,p) = mf[f o Jo NG : Exsp}

S lu@)|P dx
Moreover

plin;O (A{¢s. p))% = =195, 00) == mf{M:u € A}

diamg(2)° Ul e

where
[u(x) —u®)|
do(x, 9 'x’yeg}

and diamy($2) = sup{d(x,y):x,y € §2}.
Finally, observe that if d is the geodesic distance inside £2 then diamy(£2) is the intrinsic diameter as in the local case.

[u]d,ws,m(g) = sup {
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